唐文静, 张立萍, 许贻林, 徐恺, 路恒, 王然. 2024: 无创肌肉结构评估:肌骨超声成像技术在运动表现领域中的应用. 体育科学, 44(11): 74-86. DOI: 10.16469/J.css.2024KX040
    引用本文: 唐文静, 张立萍, 许贻林, 徐恺, 路恒, 王然. 2024: 无创肌肉结构评估:肌骨超声成像技术在运动表现领域中的应用. 体育科学, 44(11): 74-86. DOI: 10.16469/J.css.2024KX040
    TANG Wenjing, ZHANG Liping, XU Yilin, XU Kai, LU Heng, WANG Ran. 2024: Non-invasive Muscle Architecture Assessment: Application of Musculoskeletal Ultrasonography in Sports Performance. China Sport Science, 44(11): 74-86. DOI: 10.16469/J.css.2024KX040
    Citation: TANG Wenjing, ZHANG Liping, XU Yilin, XU Kai, LU Heng, WANG Ran. 2024: Non-invasive Muscle Architecture Assessment: Application of Musculoskeletal Ultrasonography in Sports Performance. China Sport Science, 44(11): 74-86. DOI: 10.16469/J.css.2024KX040

    无创肌肉结构评估:肌骨超声成像技术在运动表现领域中的应用

    Non-invasive Muscle Architecture Assessment: Application of Musculoskeletal Ultrasonography in Sports Performance

    • 摘要: 肌肉结构是影响运动表现的关键因素。肌骨超声成像(musculoskeletal ultrasonography,MSKUS)技术作为一种非侵入性的成像手段,凭借其便携性、易操作、无辐射及成本效益等显著优势,已成为评估肌肉结构与运动表现之间关系的有效工具。研究发现:1)MSKUS技术可测量的关键肌肉结构指标包括肌束长度、羽状角、肌肉横截面积和肌肉厚度,这些指标通过直接影响肌肉的收缩机制、力量传递效率和力量生成能力,进而对肌肉力量与爆发力等体能素质产生影响。具体而言,肌束长度决定了肌肉的收缩范围,羽状角影响力量传递的效率,而肌肉横截面积和厚度与肌肉的力量生成能力直接相关。2)不同运动项目对肌肉结构有特定的适应性要求。短跑运动员通常具有较长的肌束长度和较大的肌肉横截面积,以优化其爆发力;长跑运动员则表现出较大的羽状角和较小的横截面积,以适应耐力要求;力量型运动员则拥有较大的肌肉横截面积和较短的肌束长度,以提升力量的生成和传递效率。上述肌肉结构特征为运动员的选材和个性化训练提供了新的视角和理论依据。3)在运动损伤领域,定期监测肌束长度和肌肉横截面积的变化可有效评估运动员的肌肉功能状态,帮助识别潜在的高风险个体,并为伤后康复及重返赛场的决策提供科学依据。4)基于肌肉的适应性和可塑性特征,抗阻训练、增强式训练、弹振式训练和拉伸训练等方法通过各自独特的机制,能够促进肌肉结构和功能的多样化适应,从而实现肌肉力量增强、爆发力提升以及柔韧和敏捷性改善等不同的训练目标。鉴于MSKUS技术在体能素质、专项运动表现、运动损伤预防与恢复等方面的应用价值,建议将其作为运动表现分析和运动员潜力评估的重要工具,纳入现有的运动表现评估和训练体系中。

       

      Abstract: Muscle architecture is a critical determinant of sports performance. As a non-invasive imaging technique, Musculoskeletal Ultrasonography (MSKUS) has become an effective method in assessing the relationship between muscle structure and performance because of its portability, operability, nonradioactive and cost-effectiveness. It is found that: 1) MSKUS can measure fascicle length, pennation angle, muscle cross-sectional area (CSA), and muscle thickness, these parameters directly affect muscle contraction mechanics, force transmission efficiency, and force generation capacity, thereby influencing physical attributes such as muscle strength and power. Specifically, fascicle length determines the range of muscle shortening, pennation angle influences force transmission efficiency, and muscle CSA and thickness are related to force generation capacity. 2) Different sports disciplines impose specific structural adaptations on muscles. Sprinters typically exhibit longer fascicle lengths and larger muscle CSAs to optimize their explosive power; distance runners tend to have greater pennation angles and smaller CSAs to meet endurance demands; strength athletes possess larger muscle CSAs and shorter fascicle lengths to enhance force generation and transmission efficiency. These muscle structural characteristics provide new perspectives and theoretical foundations for athlete selection and personalized training. 3) In the field of sports injury, regular monitoring of fascicle length and CSA changes can effectively assess muscle function status, so as to identify individuals at high risk of injury, and provide scientific evidence for post-injury rehabilitation and return-to-play decisions. 4) Based on the adaptive and plastic nature of muscles, resistance training, plyometric training, ballistic training, and stretching training promote diverse adaptations of muscle structure and function through their unique mechanisms, thereby to enhance muscle strength, increase explosiveness, and improve flexibility and agility. Given the significant applications of MSKUS in evaluating physical fitness, sport-specific performance, injury prevention, and rehabilitation, it is recommended to set MSKUS as an important tool for performance analysis and athlete potential assessment, and it could be included in current performance evaluation and training systems.

       

    /

    返回文章
    返回