胡海旭, 吴超, 张立. 2025: 运动表现分析与“三大球”竞训融合:国际经验及应用前瞻. 体育科学, 45(6): 44-56. DOI: 10.16469/J.css.2025KX044
    引用本文: 胡海旭, 吴超, 张立. 2025: 运动表现分析与“三大球”竞训融合:国际经验及应用前瞻. 体育科学, 45(6): 44-56. DOI: 10.16469/J.css.2025KX044
    HU Haixu, WU Chao, ZHANG Li. 2025: Athletic Performance Analysis and the Integration of Competition-Training in the Three Major Team Sports: Global Insights and Strategic Applications. China Sport Science, 45(6): 44-56. DOI: 10.16469/J.css.2025KX044
    Citation: HU Haixu, WU Chao, ZHANG Li. 2025: Athletic Performance Analysis and the Integration of Competition-Training in the Three Major Team Sports: Global Insights and Strategic Applications. China Sport Science, 45(6): 44-56. DOI: 10.16469/J.css.2025KX044

    运动表现分析与“三大球”竞训融合:国际经验及应用前瞻

    Athletic Performance Analysis and the Integration of Competition-Training in the Three Major Team Sports: Global Insights and Strategic Applications

    • 摘要: 运动表现分析作为体育科技创新的前沿领域,有望成为推动“三大球”竞训融合的新兴方法与关键技术。运用文献计量分析的方法,总结国内外“三大球”运动表现分析的研究脉络与核心范式,解析国内外运动表现分析的焦点议题及演进特征。研究发现,国内在运动表现分析的研究议题相对单薄,且主要聚焦于足球项目。国外的运动表现分析相关研究已成体系,涵盖比赛表现分析与决策支持、体能与整体表现分析、个体与团队互动分析、专项训练设计与优化、技术创新与未来发展等五大核心议题。当前的运动表现分析呈现出从人工记录到多源传感数据采集转变、从单一指标分析到系统交互研究拓展、从过程描述到结果预测演进的技术革新趋势,同时伴随着理论研究的不断深化和实践导向的日益突出。研究建议,我国“三大球”应创造性地吸收并转化国际运动表现分析的前沿成果,结合本土实际需求,系统打造具有中国特色的结构化运动表现分析体系。在此基础上,创新构建从表现分析到训练设计的逆向反馈系统,将多维运动表现数据精准反馈至日常训练任务与方案优化中,实现基于数据驱动与智能算法支持的竞训融合数智化转型,为“三大球”振兴提供科技赋能与系统支撑。

       

      Abstract: Athletic performance analysis, as an innovative frontier in sports science, is poised to drive the integration of competition and training systems in the three major team sports (soccer/football, basketball, and volleyball). This study employs bibliometric analysis to synthesize global research trajectories, core methodologies, and evolving priorities in this field. Findings indicate that domestic research remains limited in scope, predominantly focusing on football. Internationally, however, a mature research framework has emerged, structured around five key themes: match performance analytics and decision-making support, physical conditioning and holistic performance evaluation, individual-team interaction dynamics, sport-specific training design and optimization, and technological innovation and predictive modeling. Current advancements reveal three transformative trends: the shift from manual notation to multimodal sensor-based data acquisition, the expansion from isolated metrics to systemic interaction analysis, and the progression from descriptive statistics to predictive insights. These developments are paralleled by deepening theoretical foundations and heightened practical applicability. To advance the three major team sports in China, strategic adoption of global best practices should be tailored to domestic contexts, fostering a structured performance analysis ecosystem with localized characteristics. Crucially, a data-driven reverse feedback mechanism should be developed to translate multidimensional performance insights into targeted training adaptations. This proposed framework—integrating intelligent algorithms and real-time analytics—aims to establish a digital-intelligent paradigm for competition-training synergy, offering scalable technological solutions to accelerate the revitalization of the three major team sports in the country.

       

    /

    返回文章
    返回