黄浩洁, 史冀龙, 侯莉娟, 刘晓莉, 乔德才. 2025: 运动力竭中丘脑底核NMDA受体介导β振荡产生的分子机制研究. 体育科学, 45(7): 73-85. DOI: 10.16469/J.css.2025KX055
    引用本文: 黄浩洁, 史冀龙, 侯莉娟, 刘晓莉, 乔德才. 2025: 运动力竭中丘脑底核NMDA受体介导β振荡产生的分子机制研究. 体育科学, 45(7): 73-85. DOI: 10.16469/J.css.2025KX055
    HUANG Haojie, SHI Jilong, HOU Lijuan, LIU Xiaoli, QIAO Decai. 2025: Molecular Mechanisms of NMDA Receptor-Mediated β Oscillations in the Subthalamic Nucleus During Exhaustive Exercise. China Sport Science, 45(7): 73-85. DOI: 10.16469/J.css.2025KX055
    Citation: HUANG Haojie, SHI Jilong, HOU Lijuan, LIU Xiaoli, QIAO Decai. 2025: Molecular Mechanisms of NMDA Receptor-Mediated β Oscillations in the Subthalamic Nucleus During Exhaustive Exercise. China Sport Science, 45(7): 73-85. DOI: 10.16469/J.css.2025KX055

    运动力竭中丘脑底核NMDA受体介导β振荡产生的分子机制研究

    Molecular Mechanisms of NMDA Receptor-Mediated β Oscillations in the Subthalamic Nucleus During Exhaustive Exercise

    • 摘要: 目的:探讨运动力竭状态下丘脑底核(subthalamic nucleus,STN)中NMDA/GABAA受体表达变化及其介导大鼠皮层—基底神经节通路β振荡(12~30 Hz)的分子机制。方法:利用改良的Bedford递增负荷训练方案创建运动力竭模型大鼠;采用免疫印迹技术检测大鼠不同力竭运动天数下STN中NMDA受体和GABAA受体表达变化;结合药物靶向干预和在体多通道神经电信号记录技术,比较大鼠STN核团注射NMDA受体拮抗剂DL−2−氨基−5−膦酰基戊酸(DL-2-amino-5-phosphonovaleric acid,APV)和人工脑脊液(artificial cerebrospinal fluid,aCSF)后,一次性力竭运动时长、距离,以及皮层—基底神经节的局部场电位(local field potentials,LFPs)的变化;采用功率谱密度(power spectral density,PSD)分析力竭运动时各核团不同频段同步振荡电活动变化;利用同步似然分析(synchronization likelihood,SL)探究皮层—基底神经节网络的功能连接变化。结果:1)免疫印迹结果显示,与静息组相比,随着力竭运动天数增加,STN中NMDA受体GluN2B亚基表达显著升高(第7天:P<0.01),而GABAA受体α1亚基未显著变化(P>0.05),导致NMDA/GABAA受体比值失衡(P<0.05);2)药物靶向干预STN核团后,分析大鼠的运动能力发现,与注射aCSF相比,NMDA受体拮抗剂APV靶向干预后大鼠负荷递增期+自主运动期以及运动疲劳初期的运动时长和距离均显著延长(P<0.05),而力竭期未见显著差异;PSD分析显示,运动皮层(primary motor cortex,M1)、苍白球外侧部(external globus pallidus,GPe)和STN在β频段的PSD值显著降低(P<0.05);SL分析发现,间接通路(Str−GPe、GPe−STN、STN−SNr)和超直接通路(M1−STN)在β频段的平均SL系数显著降低(P<0.05),而直接通路(Str−SNr)未见显著差异(P>0.05)。结论:运动力竭状态下,STN中NMDA受体过度表达会破坏Gpe−STN微环路的兴奋−抑制平衡,进而诱发皮层—基底神经节通路的β同步振荡产生,并通过选择性增强超直接通路和间接通路的功能性连接,抑制运动输出。STN中NMDA受体的上调可能是β振荡产生的关键分子机制。本研究为理解运动力竭的分子环路机制提供了新的实验证据,并为开发相关干预策略提供了潜在靶点。

       

      Abstract: Objective: To investigate the changes in NMDA/GABAA receptor expression in the subthalamic nucleus (STN) under exercise-induced exhaustion and its molecular mechanisms mediating β oscillations (12~30 Hz) in the cortico-basal ganglia pathway of rats. Methods: A modified Bedford incremental load training protocol was used to create an exercise-induced exhaustion model in rats. Immunoblotting was employed to detect changes in NMDA and GABAA receptor expression in the STN of rats after different durations of exhaustive exercise. In combination with pharmacological targeting interventions and in vivo multi-channel neural signal recording techniques, the effects of NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid(APV) and artificial cerebrospinal fluid (aCSF) injections into the STN were compared on the duration, distance, and local field potentials (LFPs) in the cortico-basal ganglia during an exhaustive exercise. Power spectral density (PSD) analysis was conducted to examine the changes in synchronized oscillatory activity across different frequency bands of various nuclei during exhaustive exercise. Synchronization likelihood (SL) analysis was used to explore the functional connectivity changes in the cortico-basal ganglia network. Results: 1) Immunoblotting results showed that, compared to the resting group, the expression of the NMDA receptor GluN2B subunit in the STN significantly increased with prolonged exercise duration (day 7: P<0.01), while the GABAA receptor α1 subunit showed no significant change (P>0.05), resulting in an imbalance in the NMDA/GABAA receptor ratio (P<0.05); 2) after pharmacological intervention in the STN, analysis of the rats’ motor performance revealed that, compared to the aCSF group, the NMDA receptor antagonist APV intervention group exhibited significant increases in Load increase phase & autonomous movement phase and early fatigue phase(P<0.05), while no significant differences were observed in the exhaustion phase. PSD analysis revealed a significant reduction in the PSD values in the β frequency band only in the primary motor cortex (M1), external globus pallidus (GPe), and STN (P<0.05). SL analysis showed a significant decrease in the average SL coefficients of the indirect pathway (Str-GPe, GPe-STN, GPe-SNr, STN-SNr) and hyperdirect pathway (M1-STN) in the β frequency band (P<0.05), while no significant differences were observed in the direct pathway (Str-SNr) (P>0.05). Conclusions: In an exhausted state, excessive NMDA receptor expression in the STN disrupts the excitation-inhibition balance in the GPe-STN microcircuit, thereby inducing β synchronized oscillations in the cortico-basal ganglia pathway. This occurs through the selective enhancement of functional connectivity in the hyperdirect and indirect pathways, inhibiting motor output. The upregulation of NMDA receptors in the STN may be a key molecular mechanism underlying β oscillation generation. This study provides new experimental evidence for understanding the molecular-circuit mechanisms of exercise-induced exhaustion and offers potential targets for the development of related intervention strategies.

       

    /

    返回文章
    返回