深度学习驱动的区域产业联动模型:“苏超”赛事对区域经济的多层级拉动效应仿真

    A Deep Learning–Powerd Regional Industrial Synery Model: Simulating the Multi-Tiered Catalytic Effects of the “Suchao” Sporting Event on Regional Economy

    • 摘要: 在“体育赛事进景区、进街区、进商圈”活动背景下,群众赛事日益成为区域经济增长的重要引擎。基于江苏省城市足球联赛系列赛事数据,融合面板回归与图神经网络(graph neural network,GNN)方法,系统评估群众赛事对区域GDP、文旅消费与特色产业的多层级拉动效应。研究发现,赛事评级指数显著提升区域GDP增速、旅游消费与特产销售,并通过“赛事—文旅—产业”的路径形成协同增长机制。GNN模型进一步揭示关键传播路径与节点效应,识别非中心区域的扩散潜力和交通、产业结构等异质性变量的调节作用。研究建议构建群众赛事评估体系与“赛事—传播—招商”政策闭环机制,精准配置赛事资源、推动“赛事+产业”融合发展。

       

      Abstract: Amidst the national initiative to integrate sports events into scenic areas, urban blocks, and commercial districts, mass sporting events have emerged as a pivotal driver of regional economic development. Leveraging data from the “Suchao” event series and combining panel regression with graph neural network (GNN) methodologies, this study simulates the multi-tiered economic impacts of mass sporting events on regional GDP growth, cultural-tourism consumption, and specialty industries. Findings demonstrate that event quality indices significantly amplify GDP growth rates, tourism expenditure, and local product sales, catalyzing a synergistic “event-cultural tourism-industry” growth cycle. The GNN model further identifies key communication pathways and nodal influence patterns, highlighting underdeveloped regions’ latent economic spillover potential and the moderating effects of heterogeneous contextual variables such as transportation networks and industrial configurations. To optimize outcomes, we propose establishing a star-rated mass sporting event evaluation system and a closed-loop “event-driven communication-investment attraction” policy mechanism, and enabling precise resource allocation and fostering “event + industry” synergy.

       

    /

    返回文章
    返回