• 国家社科基金自助期刊
  • 中国体育类核心期刊
  • 中国人文社会科学期刊AMI
  • 综合评价(A刊)权威期刊
  • 《中国社会科学引文索引》(CSSCI) 来源期刊
LIN Shi-jie, ZHANG Wei-wei, ZHENG Wei-tao, LI Xin-tao, MA Yong. 2022: Dynamic Analysis and Design of Pumping Frequency and Amplitude for RS:X Class on the Windward Leg. China Sport Science, 42(1): 68-77. DOI: 10.16469/j.css.202201006
Citation: LIN Shi-jie, ZHANG Wei-wei, ZHENG Wei-tao, LI Xin-tao, MA Yong. 2022: Dynamic Analysis and Design of Pumping Frequency and Amplitude for RS:X Class on the Windward Leg. China Sport Science, 42(1): 68-77. DOI: 10.16469/j.css.202201006

Dynamic Analysis and Design of Pumping Frequency and Amplitude for RS:X Class on the Windward Leg

More Information
  • Received Date: October 07, 2021
  • Objective: To explore the impact of the combination of frequency and amplitude on the pumping propulsion performance of the sail wing, so as to provide personalized and scientific suggestions for athletes to control sailing. Methods: Determining the sailing characteristics and establishing the pumping model firstly, then the SST k-ω turbulence model was employed to solve the aerodynamic variation of the pumping wing based on URANS. Under the condition of 20° attack angle and 3 m/s speed of upwind,the thrust coefficient and energy consumption coefficient of the sail wing with a combination of 0.67—2.00 frequencies and 2—10°amplitudes were investigated. Results: When the pumping frequency was 0.67 Hz to 1.00 Hz, the thrust coefficient and yaw force coefficient were increased with amplitude. When the pumping frequency was 1.30 Hz to 2.00 Hz, both thrust coefficient and yaw force coefficient were increased firstly and then decreased, and the wing propulsion performance was optimal when amplitude was8°. The energy consumption coefficient of the pumping wing was elevated with amplitude and frequency, the energy consumption of large-amplitude plus high-frequency was 25 times higher than that of large-amplitude plus low-frequency, and 10 times higher than that of small-amplitude plus high-frequency. Conclusion: To achieve the optimal propulsion performance, the low frequency pumping should combine with a larger amplitude, while the high frequency pumping should combine with a middle amplitude.
  • 何海峰,2012.帆板摇帆的空气动力性能数值模拟[D].武汉:武汉理工大学.
    贺阳映,马勇,张松,等,2021.基于单向流固耦合的不同攻角下奥运会帆板帆翼空气动力特性数值模拟[J].中国体育科技,57(1):81-91.
    雷晓珊,马勇,蔺世杰,2019.不同风速下Neil Pryde RS:X级别帆板帆翼空气动力性能单/双向流固耦合对比[J].中国体育科技,55(9):47-51,83.
    蔺世杰,马勇,郑伟涛,等,2017.基于力学分析的470级帆船转舵应用研究[J].体育科学,37(12):23-30.
    蔺世杰,郑伟涛,马勇,2021.基于风洞试验的奥运会RS:X级帆板摇帆推进特性研究[J].体育科学,41(3):74-83.
    马勇,郑伟涛,2012.来流处理方式对帆船帆翼空气动力数值模拟结果的影响[J].上海体育学院学报,36(6):43-46.
    马勇,郑伟涛,2013.帆船横尾风航段及标旁附近调帆策略研究[J].中国航海,36(1):70-73.
    马勇,郑伟涛,韩久瑞,2016.基于试验方法的运动帆船帆翼空气动力性能研究[J].西安体育学院学报,33(1):16-20.
    汪超,2017.微型仿生扑翼气动特性的数值研究[D].深圳:哈尔滨工业大学.
    王树杰,张宪强,张树青,2005.帆板运动迎风航行力学分析及航线选择[J].体育科学,25(8):56-58.
    王树杰,赵龙武,李冬,2009.基于动网格技术帆板摇帆空气动力特性分析[J].空气动力学学报,27(4):485-490.
    郑伟涛,李全海,马勇,等,2008.帆船帆板运动项目特征与制胜规律初探[J].武汉体育学院学报,42(6):44-47.
    ANASTASIOU A,JONES T,MULLAN P,et al.,2019.Descriptive analysis of Olympic class windsurfing competition during the 2017-2018 regatta season[J].Int J Perform Anal Sport,19(4):517-529.
    ANDRIANOPOULOS V,VOGIATZIS I,2017.Windsurfing:The physiology of athletic performance and training[M].Extreme Sports Medicine.Springer,Cham:357-363.
    AUGIER B,PAILLARD B,SACHER M,et al.,2021.Numerical and Experimental Comparison of Spinnaker Aerodynamics Close to Curling[J].J Sailing Technol,6(1):118-132.
    BAYATI I,MUGGIASCA S,VANDONE A,2019.Experimental and numerical wind tunnel investigation of the aerodynamics of upwind soft sails[J].Ocean Eng,182:395-411.
    BOMPHREY R J,NAKATA T,PHILLIPS N,et al.,2017.Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight[J].Nature,544(7648):92-95.
    CARABALLO I,CONDE-CAVEDA J,PEZELJ L,et al.,2021.GNSS applications to assess performance in olympic sailors:laser class[J].Appl Sci,11(1):264.
    CHAO L M,PAN G,CAO Y H,et al.,2018.On the propulsive performance of a pitching foil with chord-wise flexibility at the high Strouhal number[J].J Fluids Struct,82:610-618.
    GOURLAY T,MARTELLOTTA J,2011.Aero-Hydrodynamics of an RS:X Olympic Racing Sailboard[J].Cmst Curtin Edu Au,1:1-17.
    GRAF K,FREIHEIT O,SCHLOCKERMANN P,et al,2020.VPP-driven sail and foil trim optimization for the Olympic Nacra 17 foiling catamaran[J].J Sailing Technol,5(1):61-81.
    LAGOPOULOS N S,WEYMOUTH G D,GANAPATHISUBRAMANI B,2020.Deflected wake interaction of tandem flapping foils[J].J Fluid Mech,903:A9.
    LEI M,LI C,2020.The aerodynamic performance of passive wing pitch in hovering flight[J].Phys Fluids,32(5):051902.
    LI H,GUO S,2018.Aerodynamic efficiency of a bioinspired flapping wing rotor at low Reynolds number[J].Royal Soc Open Sci,5(3):171307.
    LI X,LIU Y,KOU J,et al.,2017.Reduced-order thrust modeling for an efficiently flapping airfoil using system identification method[J].JFluids Struct,69:137-153.
    LYU Y Z,ZHU H J,SUN M,2019.Aerodynamic forces and vortical structures of a flapping wing at very low Reynolds numbers[J].Phys Fluids,31(4):041901.
    MA Y,TANG Y,WEST N,et al.,2016.Numerical investigation on trimming of a single sail in a regatta[J].Sports Eng,19(2):81-90.
    MASUYAMA Y,OGIHARA M,2020.Science of the 470 Sailing Performance[J].J Sailing Tech,5(1):20-46.
    MORRIS S,WILLIAMSON C,2020.Unsteady Aerodynamics of Turning Maneuvers in Olympic Class Sailboats[A].AFMC2020,Brisbane,Australia.
    SACHER M,LEROUX J B,NÊME A,et al.,2020.A fast and robust approach to compute nonlinear Fluid-Structure Interactions on yacht sails-Application to a semi-rigid composite mainsail[J].Ocean Eng,201:107139.
    SAFARI H,ABBASPOUR M,DARBANDI M,2021.Numerical study to evaluate the important parameters affecting the hydrodynamic performance of manta ray’s in flapping motion[J].Appl Ocean Res,109:102559.
    SCHUTT R R,2017.Unsteady aerodynamics of sailing maneuvers and kinetic techniques[D].NY:Cornell University.
    VOGIATZIS I,DE VITO G,2015.Physiological assessment of Olympic windsurfers[J].Eur J Sport Sci,15(3):228-234.
    YOUNG J,MORRIS S,SCHUTT R,et al.,2019.Effect of hybridheave motions on the propulsive performance of an oscillating airfoil[J].J Fluids Struct,89:203-218.
    ZHANG Y,YANG F,WANG D,et al.,2021.Numerical investigation of a new three-degree-of-freedom motion trajectory on propulsion performance of flapping foils for UUVs[J].Ocean Eng,224:108763.
    ZURMAN-NASUTION A,GANAPATHISUBRAMANI B,WEYMOUTH G,2020.Influence of three-dimensionality on propulsive flapping[J].J Fluid Mech,886:A25.
  • Cited by

    Periodical cited type(1)

    1. 张志勇,马勇,蔺世杰,刘林,文浩. 基于数值模拟的运动双人帆船船体与稳向板操控优化. 武汉体育学院学报. 2022(09): 78-82 .

    Other cited types(1)

Catalog

    Article views (8) PDF downloads (1) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return